Abstract

A numerical model is developed for the current distribution in a high temperature superconducting (HTS) tape, (Bi,Pb)/sub 2/Sr/sub 2/Ca/sub 2/Cu/sub 3/O/sub x/-Ag, subjected to a combination of a transport current and an applied magnetic field. This analysis is based on a two-dimensional formulation of Maxwell's equations in terms of an integral equation for the current density J. The finite thickness of the conductor and an arbitrary voltage-current relation (e.g. n-power relation, magnetic field dependency) for the conductor are included in the model. Another important feature is that the model also covers an applied magnetic field in arbitrary directions and a rotating field perpendicular to the conductor, which is of great interest for analyzing the AC loss of HTS (transformer) coils or three-phase electric power cables. A comparison is made with transport current loss measurements on an HTS tape with an AC applied field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.