Abstract

Accurate analysis of experimental data from hypersonic impulse facilities is difficult due to the limited amount of free-stream flow property data that can be measured at the nozzle exit. Reflected shock tunnels (RSTs) are particularly difficult due to short test periods and high total pressures. To over come the lack of knowledge at nozzle exit in RSTs, experimenters typically calculate the quasi-steady gas properties at nozzle exit based on assumption that the test gas is processed, in stages, by idealized waves that are essentially decoupled. Such a simplified calculation uses shock tube initial fill conditions, experimental incident shock speed, stagnation pressure and Pitot pressure as inputs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.