Abstract

Typical methods for binaural source separation consider only the direct sound as the target signal in a mixture. However, in most scenarios, this assumption limits the source separation performance. It is well known that the early reflections interact with the direct sound, producing acoustic effects at the listening position, e.g. the so-called comb filter effect. In this article, we propose a novel source separation model, that utilizes both the direct sound and the first early reflection information to model the comb filter effect. This is done by observing the interaural phase difference obtained from the time-frequency representation of binaural mixtures. Furthermore, a method is proposed to model the interaural coherence of the signals. Including information related to the sound multipath propagation, the performance of the proposed separation method is improved with respect to the baselines that did not use such information, as illustrated by using binaural recordings made in four rooms, having different sizes and reverberation times.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.