Abstract

Simulations of a dilute spray evaporating in spatially decaying homogeneous turbulence are performed. An Eulerian description of the flow is adopted, while the behavior of the discrete liquid phase is captured using Lagrangian modeling. Time and length scales of the continuous carrier phase are fully simulated and by varying the properties of the modeled spray, a database of spray carrier phase direct numerical simulation (CP-DNS) is obtained. The CP-DNS is then filtered on a coarse grid to conduct a priori tests of subgrid scale (SGS) closures. The objective is to provide methods for approximating the level of SGS mixture fraction variance in large eddy simulation (LES) of fuel spray turbulent combustion. Direct estimation of the variance from the scales resolved in LES is first discussed. Then, the solving of a balance equation to get the variance is addressed, with closures for the scalar dissipation rate and the correlation between vapor source and mixture fraction. From the results, a procedure to couple spray evaporation with SGS turbulent combustion modeling emerges.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.