Abstract

New potentiometric experiments have been performed in NaCl and in (CH3)4NCl media, to determine the protonation constants, the protonation enthalpy changes and the solubility of six natural α-amino acids, namely Glycine (Gly), Alanine (Ala), Valine (Val), Leucine (Leu), Serine (Ser) and Phenylalanine (Phe). The aim of the work is the rationalization of the protonation thermodynamics (log K_{rm i}^{rm H} , solubility and Delta {H}_{text{i}}^{0} ) in NaCl, determining recommended, tentative or provisional values in selected experimental conditions and to report, for the first time, data in a weak interacting medium, as (CH3)4NCl. Literature data analysis was performed selecting the most reliable values, analyzed together with new data here reported. Significant trends and similarities were observed in the behavior of the six amino acids, and in some cases it was possible to determine common parameters for the ionic strength and temperature dependence. In general, the first protonation step, relative to the amino group, is significantly exothermic (average value is Delta {H}_{1}^{0} = −44.5 ± 0.4 kJ mol−1 at infinite dilution and T = 298.15 K), and the second, relative to the carboxylate group, is fairly close to zero ( Delta {H}_{2}^{0} = −2.5 ± 1.6, same conditions). In both cases, the main contribution to the proton binding reaction is mainly entropic in nature. For phenylalanine and leucine, solubility measurements at different concentrations of supporting electrolyte allowed to determine total and specific solubility values, then used to obtain the Setschenow and the activity coefficients of all the species involved in the protonation equilibria. The values of the first protonation constant in (CH3)4NCl are lower than the corresponding values in NaCl, due to the weak interaction between the deprotonated amino group and (CH3)4N+. In this light, differences between the protonation functions in NaCl and (CH3)4NCl were used for the quantification of the stability of the weak [(CH3)4N+–L−] complexes that resulted log K = −0.38 ± 0.07 as an average value for the six amino acids.Electronic supplementary materialThe online version of this article (doi:10.1186/s40064-016-2568-8) contains supplementary material, which is available to authorized users.

Highlights

  • As well known, α-amino acids are fundamental for any form of life (Amend and Helgeson 1997), being the building block of proteins and nutrients

  • From a nutritional point of view, the twenty natural α-amino acids may be divided into essential, EAA (AA that must be introduced in the organism by an adequate diet), conditionally essential, CEAA (AA that normally can be synthesized in adequate amounts by the organisms, but must be provided in the diet in certain conditions) and non-essential, NEAA, but this classification depends on species, development stage, physiological status, environmental factors and disease (Wu 2013)

  • Collection of literature data Since in the literature there are many papers dealing with the protonation thermodynamics of the amino acids under study, a critical analysis of the literature data was done

Read more

Summary

Introduction

Α-amino acids (αAA) are fundamental for any form of life (Amend and Helgeson 1997), being the building block of proteins and nutrients. From a nutritional point of view, the twenty natural α-amino acids may be divided into essential, EAA (AA that must be introduced in the organism by an adequate diet), conditionally essential, CEAA (AA that normally can be synthesized in adequate amounts by the organisms, but must be provided in the diet in certain conditions) and non-essential, NEAA (may be synthesized by the organisms), but this classification depends on species, development stage, physiological status, environmental factors and disease (Wu 2013). According to Frausto da Silva and Williams, (Frausto da Silva and Williams 2001) the twenty α-amino acids may be divided in four classes on the basis of the residue linked to the α-carbon atom, namely: charged hydrophilic (Lysine, Arginine, etc.), intermediate hydrophilic (Serine, Histidine, etc.), hydrophobic (Leucine, Valine, Alanine, Phenylalanine, etc.) and structural amino acids (Glycine, Proline). Being the α-carbon atom a chiral center all the α-amino acids have two enantiomers (except glycine), but the L-stereoisomer is predominant in nature. D-AA exist in animals, micro-organisms, and plants (Friedman 1999)

Objectives
Findings
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.