Abstract
Finite-element (FE) simulations of the deformation behavior of a 5.4-m-long, 8-m-wide, and 0.27-m-thick stress-laminated timber bridge deck were conducted. The simulation results were compared with full-scale test results when using a load resembling an axle load placed near the edge and when cycling the load between a high and low value. Two separate approaches to nonlinear FE modeling were used. The first FE model simulates a frictional slip between the glulam beams with an elastic-plastic material model. The second FE model simulates a frictional slip by modeling each discrete contact surface between each beam in the deck. The results show good agreement between simulation and test results and reveal that the simulation model that models contact surfaces produces slightly better results at the expense of a greater modeling effort and increased computational time. Hysteresis in the load versus deformation curves is clearly visible and was due to significant slip between the glulam beams, which was successfully simulated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.