Abstract
A model fully coupling the flow, species transport, and electrochemical kinetics in polymer electrolyte fuel cells is presented to explore operation undergoing very large density and velocity variations. Comparisons are also made to a previous constant-flow model, which neglects the mass source/sink from the continuity equation and assumes constant gas density. Numerical results reveal large density (>50%) and velocity (>80%) variations occurring in the anode at anode stoichiometry of 1.2. In addition, the hydrogen concentration remained as high as the inlet owing to deceleration of the anode gas flow. Finally, the constant-flow model is accurate within 14% under common operating conditions, i.e., for anode stoichiometry ranging from 1.2 to 2.0. © 2005 The Electrochemical Society. All rights reserved.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.