Abstract

Opponent modeling is a critical mechanism in repeated games. It allows a player to adapt its strategy in order to better respond to the presumed preferences of its opponents. We introduce a modeling technique that adaptively balances safety and exploitability. The opponent's strategy is modeled with a set of possible strategies that contains the actual one with high probability. The algorithm is safe as the expected payoff is above the minimax payoff with high probability, and can exploit the opponent's preferences when sufficient observations are obtained. We apply the algorithm to a robot table-tennis setting where the robot player learns to prepare to return a served ball. By modeling the human players, the robot chooses a forehand, backhand or middle preparation pose before they serve. The learned strategies can exploit the opponent's preferences, leading to a higher rate of successful returns.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.