Abstract

Tumor growth models are important to create an engineering background for cancer treatment either by using the models for simulations and evaluation of treatment protocols or, if combined with control engineering, by designing treatment protocols. A well-defined tumor growth model must describe the physiological processes and the measurements as well. Growing tumors are composed of dead tumor cells (forming the necrotic part) and living, proliferating tumor cells (forming the proliferating part); when tumor volume is measured, these parts are measured together. Most of the known tumor growth models do not consider the modeling of the necrotic part. Starting from a minimal model of the tumor growth under bevacizumab treatment, the aim of the current research is to extend it incorporating the volume and dynamics of the necrotic part and the pharmacodynamics and mixed-order pharmacokinetics of the applied drug. The extended model is validated using measurements with mice as hosts, colon adenocarcinoma as tumor, and bevacizumab as the drug used for treatment. The results show that the extended model can describe the important physiological phenomena and shows a good fit to the average of the measurements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.