Abstract

The process of dissolution of solid particles in turbulent flow regime is of importance in many industrial applications. A new size distribution takes place due to dissolving during the motion of a solid–liquid suspended system in a stirred vessel. An analytical relationship was derived to represent the concentration profile in diffusion boundary layer between solid and liquid. An expression was obtained between mass transfer flow from spherical particle area and particle size changing with time during dissolution of solids. A mathematical model was developed for calculating particle size distribution varying with time during dissolution of spherical solid particles. The Focker–Planck equation was used to construct the distribution function varying with particle size. Model parameters were estimated by the Genetic Algorithm, the validity of the model was confirmed with experimental data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.