Abstract

Gas detection sensor is crucial in many practical applications. However, numerous of the existing gas sensors still suffering from high power consumption, damping, and poor accuracy. These factors have a significant impact on the gas detection sensor's sensitivity and reliability. A Micro-Electro-Mechanical System (MEMS) is presented in this paper, along with its model with high efficiency. The sensor is based on standard Polysilicon Multi-Users-MEMS-Process (PolyMUMPs). The detection of gaseous species is dependent on a changes in the sensor's resonance frequency. The resonance frequency, quality factor, and mass sensitivity are observed to reduce as the beam length increases and to rise as the beam width increases. While overall mass rises as the length/width of the beam both increases. The analytical findings of the resonance frequency, quality factor, and mass sensitivity are found to be 9.3747 kHz, 4.5183, and 5.1676 mHz/pg, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.