Abstract

In the present work, the two-phase turbulent boundary layer in subcooled boiling flow is investigated. The bubbles in the near-wall region have a significant effect on the dynamics of the underlying liquid flow, as well as on the heat transfer. The present work develops a single-fluid model capable of accounting for the interactions between the bubbles and the liquid phase, such that the two-phase convective contribution to the total wall heat transfer can be described appropriately even in the framework of single-fluid modeling. To this end, subcooled boiling channel flow was experimentally investigated using a laser-Doppler anemometer to gain insight into the bubble-laden near-wall velocity field. It was generally observed that the streamwise velocity component was considerably reduced compared to the single-phase case, while the near-wall turbulence was increased due to the presence of the bubbles. Since the experimentally observed characteristics of the liquid velocity field turned out to be very similar to turbulent flows along rough surfaces, it is proposed to model the near-wall effect of the bubbles on the liquid flow analogously to the effect of a surface roughness. Incorporating the proposed approach as a dynamic boundary condition into a well-established mechanistic flow boiling model makes it possible to reflect adequately the contribution of the microconvection to the total wall heat transfer. A comparison against the experimental data shows good agreement for the predicted wall shear stress as well as for the wall heat flux for a wide range of wall temperatures and Reynolds numbers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.