Abstract
The article presents an analysis of simulation results for the Black Sea circulation. The calculations were carried out with a horizontal resolution of 1.6~km and taking into account the real atmospheric forcing for 2006 and 2011. Eddies with characteristic mesoscale and submesoscale spatio-temporal parameters were reconstructed in the velocity fields. It is shown that the simulated hydrophysical fields correspond to observed data. The most intensive generation of eddies with the scale of less than 10~km and orbital velocities of 20 -- 30~cm/s was observed in the neighborhood of the Crimean Peninsula, in the north-eastern and south-eastern parts of the sea. Vortex structures in the shelf zones were formed in all seasons with weak winds of directions. Their size depended on the depth and length of the shelf, as well as on the dimensions of coastal capes. The analysis of spatial and temporal variability of salinity fields and the longshore velocity component in the vertical cross-section passing through eddy centers showed that two main mechanisms of coastal eddies formation dominated in the Black Sea. The first mechanism is baroclinic instability, which arises with increasing horizontal density gradient in the periphery of large eddies or currents due to water rising/lowering. The second mechanism is the streamlining of shore inhomogeneities by the coastal current with a velocity higher than 40~cm/s.
Highlights
The article presents an analysis of simulation results for the Black Sea circulation
The analysis of spatial and temporal variability of salinity fields and the longshore velocity component in the vertical cross-section passing through eddy centers showed that two main mechanisms of coastal eddies formation dominated in the Black Sea
The first mechanism is baroclinic instability, which arises with increasing horizontal density gradient in the periphery of large eddies or currents due to water rising/lowering
Summary
Численные эксперименты выполнены с помощью нелинейной вихреразрешающей модели МГИ [3]. Уравнения модели записаны в декартовой системе координат. Ниже представлены уравнения для горизонтальных компонентов скорости течений: du dt. В устьях рек и проливах задаются нормальные компоненты скорости (условия Дирихле II рода). Конечно-разностный аналог системы дифференциальных уравнений модели построен на сетке С. Дискретные уравнения являются точным следствием конечноразностной формулировки модели, что обеспечивает выполнение основных интегральных соотношений и законов сохранения. В [10] представлены подробная постановка задачи, описание полной системы уравнений модели, начальных и граничных условий. Также на верхнем расчетном горизонте каждые сутки усваивалась температура поверхности моря, которая была получена по данным спутника NOAA [7]. Солености и скорости в устьях рек и проливах использовались климатические данные, в верхнебосфорском течении температура и соленость та же, что и в море. В начальный момент времени задавались поля уровня, температуры, солености и скоростей течений.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Karelian Research Centre of the Russian Academy of Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.