Abstract
Stress-induced leakage current (SILC) in ultrathin oxide metal–oxide–semiconductor devices has been quantitatively modeled by the trap-assisted tunneling mechanism. These results are compared with experimental data on samples with oxide thickness ranging from 40 to 80 Å. This model accurately describes the electric-field dependence of SILC, and also predicts the increase, then decrease in SILC, with decreasing oxide thickness, which is observed experimentally.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.