Abstract
To better apply fiber Bragg gratings (FBGs) to various bending required situations, good understanding of their bending characteristics is crucial. In this Letter, a theoretical model to describe the changes of spectral properties of an FBG against the bending radius is proposed. This model shows that all the bend-induced spectral changes, the shift of center wavelength, decrease of reflectivity, and reduction of bandwidth, may be explained by the decrease of the effective "dc" refractive index change spatially averaged over one grating period. Experimental results are in agreement with theoretical predictions and confirm the effectiveness of the proposed model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.