Abstract

The motivation of this research is to develop practical oxy-coal combustion techniques in order to facilitate the conversion of coal-fired utility power plants so as to recover a CO 2 rich flue gas stream for use and/or sequestration. The objective of this study is to ascertain the applicability and accuracy of a modeling tool to assist with future pilot scale oxy-fuel combustion experiments and burner scale-up studies. Two modes of oxy-coal combustion, O 2 enriched air (OEA) and recycled flue gas (RFG), were experimentally tested in a 0.3 MW th pilot-scale combustor using a western Canadian sub-bituminous coal. The computational fluid dynamic tool was utilized to model the combustion, heat transfer and pollutant formation characteristics of these test cases and to examine the impact due to changes in the combustion medium, burner swirl and burner configuration. The model provided insights for the observed variation in NO x production among the test cases: the dramatic increase in the OEA mode, the drop at higher burner swirl settings and the surprisingly small reduction in the RFG mode. Overall the model results compared well with measured data in all test cases and established confidence in using the model to explore new design concepts for oxy-coal combustion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.