Abstract
During Si crystal growth, nucleation and growth of voids and vacancy-type dislocation loops under Si vacancy supersaturation conditions have been modeled. From nucleation barrier calculations, it is shown that voids can be nucleated, but not dislocation loops. The homogeneous nucleation rate of voids has been calculated for different temperatures by assuming different enthalpy of Si vacancy formation. The void growth process has been calculated using a moving boundary formulation. Matching the results of void nucleation and growth simulations and taking into account the competition between the two processes, limited time available, and the crystal cooling rate, it is shown that the experimentally observed void density and size data can be explained if the Si vacancy formation enthalpy is in the range of 2.8–3.4 eV and the void nucleation temperature is in the range of 970–1060 °C.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.