Abstract
A simple technique is proposed for modeling short normal-mode helical antennas using a commercial finite-difference time-domain (FDTD) code with a rectangular grid and a nominal extension of the wire. The approach allows affects on the input impedance and radiation performance of the helix to be examined and importantly does not require modification of the excitation subroutines. Normal-mode helical antennas for mobile communications use at 900 and 1800 MHz were designed using the proposed method and good agreement with measurements of impedance and near-magnetic field strength was found. The radiating performance of the helix was compared to that of a /spl lambda//4 monopole and generally found to be inferior at 900 MHz due to only 19.2 % efficiency in the presence of the head. At 1.8 GHz the two antenna types showed similar characteristics except in regard to bandwidth, 36.1 % for the monopole and 7.8 % for the helix, in the presence of the head. The modeled helix antennas produce spatial peak specific absorption rate (SAR) figures that are up to 27 % greater at 900 MHz and up to 49 % greater at 1.8 GHz than the corresponding monopole values due to the shorter antenna.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.