Abstract

We derive a mathematical model of a nematic electrolyte based on the Ericksen--Leslie theory of liquid crystal flow. Our goal is to investigate the nonlinear electrokinetic effects that occur because the nematic matrix is anisotropic, in particular, transport of ions in a direction perpendicular to the electric field as well as quadratic dependence of the induced flow velocity on the electric field. The latter effect makes it possible to generate sustained flows in the nematic electrolyte that do not reverse their direction when the polarity of the applied electric field is reversed. From a practical perspective, this enables the design of AC-driven electrophoretic and electroosmotic devices. Our study of a special flow in a thin nematic film shows good qualitative agreement with laboratory experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.