Abstract

Abstract External quantum efficiency (EQE) of a solar cell provides information on the internal operations of the solar cells which can be used in optimization of solar cell design. The EQE of solar cells for space applications is adversely affected by the influence of charged particles in space. Usually numerical model based software, e.g., PC1D, are used to estimate the EQE and fitted with the measured EQE to obtain degradation performance of space solar cells. However, the accuracy of these models may be limited due to complex phenomena and interactions occurring between the junctions of the solar cells and the nonlinear influence of charged particles. In this paper we propose an artificial neural network (ANN)-based model to estimate the EQE performance of triple-junction InGaP/GaAs/Ge solar cells under the influence of a wide range of charged particles. Using the experimental data from Sato et al. [1] , it is shown that the ANN-based models provide a better estimate of the EQE than the PC1D model [1] in terms of mean square error and correlation coefficient.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.