Abstract

This paper presents the numerical modeling of the Lamb wave propagation in thin plates with the elastodynamic finite integration technique (EFIT) and its validation with the measured results. In general, Lamb waves offer an attractive method to detect the defects inside long plate like structures efficiently. However, such a nondestructive testing (NDT) requires profound understanding of the Lamb wave propagation in the plates, generation of the symmetric and anti-symmetric modes of different orders and their interaction with the defects of the materials. Modern simulation tools based on numerical methods such as the finite integration technique (FIT), the finite element method (FEM) and the boundary element method (BEM) can be used to model this NDT situation. The elastodynamic finite integration technique (EFIT) is an effective tool to model Lamb wave propagation in plates over long distances in an efficient way. With the help of the simulation results obtained from the EFIT tool the propagation of different symmetric and anti-symmetric modes is analyzed and thus a proper technique is developed to excite different modes and to separate them from each other precisely. A validation of the numerical results with the analytical results is also presented.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.