Abstract

In free radical polymerization diffusion-controlled processes take place simultaneously to the normal chemical reactions. Despite extensive efforts to model such processes a consistent model for the design of a polymerization reactor has not yet been established. In this article a semiempirical model describing the conversion, polymerization degree, and molecular weight distribution (MWD) for the free radical polymerization is developed for the entire course of the reaction. The model includes the change of termination, propagation, transfer, and initiation rate. By simultaneous parameter estimation from the conversion and degrees of polymerization data the model parameters have been determined for isothermal polymerizations of methyl methacrylate (MMA) and styrene (ST). The simulation results for the conversion, degrees of polymerization, and MWD are in good accordance with experimental data for suspension and bulk polymerization of MMA and ST up to very high conversions. The influence of diffusion on the propagation rate in case of polymerization of MMA is negligible compared to the influence of the cage effect on the radical efficiency; in case of ST polymerization both effects must be included in the kinetic model. The model presented is also tested for polymerizations conducted in the presence of solvent and/or chain transfer agents.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.