Abstract
Forest fires are the result of poor land management and climate change. Depending on the type of the affected eco-system, they can cause significant biodiversity losses. This study was conducted in the Amazonas department in Peru. Binary data obtained from the MODIS satellite on the occurrence of fires between 2010 and 2022 were used to build the risk models. To avoid multicollinearity, 12 variables that trigger fires were selected (Pearson ≤ 0.90) and grouped into four factors: (i) topographic, (ii) social, (iii) climatic, and (iv) biological. The program Rstudio and three types of machine learning were applied: MaxENT, Support Vector Machine (SVM), and Random Forest (RF). The results show that the RF model has the highest accuracy (AUC = 0.91), followed by MaxENT (AUC = 0.87) and SVM (AUC = 0.84). In the fire risk map elaborated with the RF model, 38.8% of the Amazonas region possesses a very low risk of fire occurrence, and 21.8% represents very high-risk level zones. This research will allow decision-makers to improve forest management in the Amazon region and to prioritize prospective management strategies such as the installation of water reservoirs in areas with a very high-risk level zone. In addition, it can support awareness-raising actions among inhabitants in the areas at greatest risk so that they will be prepared to mitigate and control risk and generate solutions in the event of forest fires occurring under different scenarios.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have