Abstract

A Diffuse Interface Model (DIM) is employed to model droplet impact on a heated solid surface. The DIM uses an especially constructed solid wall boundary condition which enables simulations with different wetting conditions of the solid surface. The model is also extended to include the effects of surface roughness on the behavior of the contact line dynamics. Multiple simulations are carried out to demonstrate the capabilities of the presented model. The simulation results demonstrate the influence of the wetting properties of the solid, with a higher cooling rate for hydrophilic than for hydrophobic wetting conditions. Surface roughness of the solid surface increases the cooling rate of the solid by enhancing the heat transfer between solid and fluid.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.