Abstract

A dynamic model has been constructed to describe the Cu oxidation reaction within a large-scale Cu/CuO chemical looping process in adiabatic fixed-bed reactors. Careful control of the temperature is required during Cu oxidation because of its high reaction enthalpy. The recycling of a large amount of nitrogen, previously cooled down, and its mixture with air for Cu oxidation regulates the temperature in the reaction front, ensuring that undesirable hot spots that would lead to the irreversible loss of Cu activity are avoided. Since the gas/solid heat exchange front advances faster than the reaction front, the bed is eventually left at a low temperature. An additional stage was added to allow a gas/solid heat exchange between the hot recycled gas and the oxidized bed. This ensures that the fixed-bed is ready for the next reaction step that involves the reduction of CuO by a fuel gas. A sensitivity analysis of the main operating parameters confirms the theoretical viability of this operation. Cu oxidation is favored at high pressure and therefore fast reaction rates were achieved, even with low contents of oxygen in the feed (around 3–4%). The recirculation of more than 80% of the exit gas from the oxidation reactor and its subsequent cooling down to around 423K keep the maximum temperature down to within reasonable values (1173K). Although this work was focused on the boundary conditions of the Ca/Cu looping process for hydrogen production and/or power generation, some of the trends observed may be considered valid for other CLC systems that use similar N2 recycles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.