Abstract

In this paper, we present the design of a novel waveguide structure capable of multifrequency transmission bands with strongly enhanced electric field states. The concept of the structure is based on aperiodic and quasi-periodic fractal ordering of scattering subunits combined within a traditional channel-waveguide scheme. The resulting 3-D fractal waveguides are characterized by complex transmission spectra and sustain quasi-localized field modes with strong enhancement effects due to the lack of translational symmetry. In this paper, we will describe how it is possible to accurately model these complex waveguide structures within a simple 1-D model. We will explore the formation of photonic band gaps and the character of the quasi-localized states in fractal waveguide structures generated according to different deterministic rules, such as Fibonacci, Thue-Morse, and Rudin-Shapiro sequences. Furthermore, we will qualitatively compare the characteristics of the optical gaps and field states in periodic, fractal, and aperiodic waveguides. The results of our comparative study will show that fractal waveguides based on aperiodic order exhibit the richest transmission spectra with field-enhancement effects occurring at multiple frequencies. The proposed fractal waveguide design can provide an attractive route toward the fabrication of optically active devices for multiwavelength operation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.