Abstract

Abstract Concrete box girder bridges occupy over 80% of the total mileage of the Chinese high-speed railway. The box girder structure has many natural modes of low frequencies, which can be excited by a train passing at high-speed, generating low-frequency bridge noise. This paper is concerned with the prediction of such bridge noise and reports a prediction model. The model, as other existing models of the same nature, also incorporates two parts, one dealing with vehicle–track-viaduct dynamics and the other dealing with sound radiation from the girders, but takes into account more features related to high-speed. In this model, vehicle–track-viaduct dynamics is dealt with in the frequency-domain based on the theory of infinitely long periodic structure and the Fourier-series method, predicting vibration frequency spectra for each and every box girder. The predicted vibration frequency spectra of all the box girders are expressed as a sum of propagating waves at different wavenumbers, and sound radiation from each propagating wave is evaluated using the 2.5D acoustic boundary element method. This approach to sound radiation enables contributions from all the box girders to be included at a reasonable computational cost. This paper continues with a comparison in bridge vibration and noise between prediction and measurement for a typical site. And finally, based on the parameters of that site, characteristics of noise radiation from the concrete box girders are studied using the prediction model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.