Abstract
Software testing is an effective means of verifying software stability and trustworthiness. It is essential in the software development process and needs a huge quantity of resources such as labor, money, and time. Automated software testing can be used to save manual work, shorten testing times, and improve testing performance. Recently, Software Bug Prediction (SBP) models have been developed to improve the software quality assurance (SQA) process through the prediction of bug parts. Advanced deep learning (DL) models can be used to classify faults in software parts. Because hyperparameters have a significant impact on the performance of any DL model, a proper hyperparameter optimization approach utilizing metaheuristic methods is required. This paper provides a unique Metaheuristic Optimization with Deep Learning based SBP (MODL-SBP) methodology to ensure software dependability and trustworthiness. The suggested technique entails creating a hybrid Convolution Neural Network (CNN) bi-directional long short-term memory (BiLSTM) to forecast software problems. Furthermore, the Chaotic Quantum Grasshopper Optimization Algorithm (CQGOA) is used for hyperparameter optimization of the CNN-BiLSTM models, which enhances predictive accuracy. To demonstrate the superior performance of the MODL-SBP technique, a wide range of simulations are performed on benchmark datasets, with the results highlighting the superior performance of the proposed model over other recent techniques.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.