Abstract

Analyzing macro-political processes is complicated by four interrelated problems: model scale, endogeneity, persistence, and specification uncertainty. These problems are endemic in the study of political economy, public opinion, international relations, and other kinds of macro-political research. We show how a Bayesian structural time series approach addresses them. Our illustration is a structurally identified, nine-equation model of the U.S. political-economic system. It combines key features of the model of Erikson, MacKuen, and Stimson (2002) of the American macropolity with those of a leading macroeconomic model of the United States (Sims and Zha, 1998; Leeper, Sims, and Zha, 1996). This Bayesian structural model, with a loosely informed prior, yields the best performance in terms of model fit and dynamics. This model 1) confirms existing results about the countercyclical nature of monetary policy (Williams 1990); 2) reveals informational sources of approval dynamics: innovations in information variables affect consumer sentiment and approval and the impacts on consumer sentiment feed-forward into subsequent approval changes; 3) finds that the real economy does not have any major impacts on key macropolity variables; and 4) concludes, contrary to Erikson, MacKuen, and Stimson (2002), that macropartisanship does not depend on the evolution of the real economy in the short or medium term and only very weakly on informational variables in the long term.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.