Abstract

A description of ionic transport in unsaturated porous materials due to gradients in the electro–chemical potential and the moisture content is developed by averaging the relevant microscopic transport equations over a representative volume element. The complete set of equations consists of time-dependent equations for both the concentration of ionic species within the pore solution and the moisture content within the pore space. The electrostatic interactions are assumed to occur instantaneously, and the resulting electrical potential satisfies Poisson's equation. Using the homogenization technique, moisture transport due to both the liquid and vapor phases is shown to obey Richards' equation, and a precise definition of the moisture content is found. The final transport equations contain transport coefficients that can be unambiguously related to experimental quantities. The approach has the advantage of making the distinction between microscopic and bulk quantities explicit.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.