Abstract
The driver model is the decision-making and control center of intelligent vehicle. In order to improve the adaptability of intelligent vehicles under complex driving conditions, and simulate the manipulation characteristics of the skilled driver under the driver-vehicle-road closed-loop system, a kind of human-like longitudinal driver model for intelligent vehicles based on reinforcement learning is proposed. This paper builds the lateral driver model for intelligent vehicles based on optimal preview control theory. Then, the control correction link of longitudinal driver model is established to calculate the throttle opening or brake pedal travel for the desired longitudinal acceleration. Moreover, the reinforcement learning agents for longitudinal driver model is parallel trained by comprehensive evaluation index and skilled driver data. Lastly, training performance and scenarios verification between the simulation experiment and the real car test are performed to verify the effectiveness of the reinforcement learning based longitudinal driver model. The results show that the proposed human-like longitudinal driver model based on reinforcement learning can help intelligent vehicles effectively imitate the speed control behavior of the skilled driver in various path-following scenarios.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.