Abstract

The Levantine Iron Age anomaly (LIAA) is a regional short-decadal geomagnetic strength field variation located at the Levantine region characterized by high intensities with maximum virtual axial dipole moments around 190 ZAm2. It has been constrained by archeomagnetic data coming from Eastern Europe and Western Asia between 1050 and 700 BC. The LIAA can be related to a fast and spatially localized geomagnetic positive anomaly (spike) at the Earth’s surface. In this study, we model the LIAA by using a Fisher–von Mises function that fits the most recent archeomagnetic intensity database in the region. A spherical harmonic analysis is implemented for this spike function to perturb a base model in order to build a global reconstruction (perturbed-model) that reproduces the spatial and temporal characteristics of the LIAA. Our results show the importance of harmonic degrees from n = 3–4 to n = 20 to reconstruct the anomaly extension suggested by the database. Two maxima linked with the LIAA are reproduced by our global perturbed-model at the Levantine region at 950 BC and 750 BC. A third maxima in intensity around 500 BC is also observed, affecting the whole Europe.Graphical

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.