Abstract

When a liquid is forced to flow radially outward in the gap between two coaxial, parallel annular disks—one rotating and one stationary—the liquid occupies the entire gap until the speed of the rotating disk reaches a critical value. Beyond that critical speed, gas from the outer radius starts to enter into the gap, a process referred to as aeration. The higher the rotational speed, the greater is the extent of penetration by the gas into the gap. The extent of gas penetration strongly affects the torque exerted between the two disks because of the large difference in the gas and liquid viscosities. In this study, a reduced-order model is developed to predict the onset of aeration, extent of gas penetration into the gap, and drag torque as a function of the disk's rotational speed, gap between disks, properties of the liquid, and mass flow rate of the liquid forced through the gap. The model developed was validated by comparing predictions with experimental data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.