Abstract

Dispersion of ultrafine particles (less than 0.1 μm) and accumulation mode particles (0.1–2.5 μm) remains as an area of major concern to microelectronic and semiconductor industry. A possible means of containing the dispersion of particulate pollutants is to subject them to electrostatic precipitation. The present study is concerned with the dispersion of particles in the presence of an inhomogeneous electric field. The widely accepted drift flux model is used to account for the drift flux induced by the inhomogeneous electric field. The mean turbulent flow field for the present analysis is obtained by solving the re-normalization group (RNG) k– ɛ model with the aid of the open source CFD code – Open∇FOAM version 1.5. In addition to the flow field equations, the Poisson equation for the electric field, the charge continuity equation and the particle concentration equation are solved to obtain a complete solution for the present case. A comparison of the concentration field for a particle size of 0.1 μm with and without electric field reveals the impact of electric field on particle concentration distribution. The simulation results are compared with the available experimental data and numerical results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.