Abstract
An algorithm is developed for modeling atom-level dynamics of DNA subjected to steady external torques. For completeness, simulations with steady stretching loads are also considered. The algorithms were tested in Brownian dynamics simulations of discrete wormlike chain models with calibrated elastic properties to confirm that the elastic responses induced are of desired type and magnitude and that no side effects appear. The same methods were next used in a series of 100-ns all-atom MD simulations of tetradecamer DNA fragments with explicit water and counterions. The results demonstrate the possibility of probing regular elastic responses in DNA under low, nearly physiological amplitudes of forces and torques.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.