Abstract

Although bi-directional analog switching capability is crucial for neuromorphic computing application, it is still difficult to be realized in filamentary RRAM cells. This work investigates the physical mechanism of the abrupt switching to the analog switching transition using Kinetic Monte Carlo simulation method. A disorder-related model for oxygen vacancy distribution is proposed with an order parameter Oy to quantify the analog behaviors of different RRAM devices. The simulation results and model predictions are verified by experiments performed on 1kb RRAM array. It is suggested that disordered oxygen vacancy distribution is desired for analog switching. Optimization guideline for improving the analog performance of filamentary RRAM is provided.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.