Abstract

Differential scanning calorimetry (DSC) of thermally degrading thermoplastics is modeled using a discrete population balance equation (PBE). The PBE allows for species mole change due to pyrolysis and bubbling mass loss. Efficient solution is achieved by lumping non-volatile species into a single, notional “polymer” species. Thermodynamic properties are calculated by group additivity techniques, and empirical corrections are made to account for the changes in specific heat capacity and enthalpy upon mixing. Simulation results for high-density polyethylene (HDPE) are compared to literature data for DSC at heating rates of 5, 10, and 20K/min. The model predicts peak energy absorption rates to within 4% at the lowest heating rate. The heat of decomposition was found to be within 17% of literature values at all three heating rates. The predicted pyrolysis gas species distribution agrees well with literature gas chromatography–mass spectrometry (GC–MS) data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.