Abstract

Multilayered electronic components, typically of heterogeneous materials, delaminate under thermal and mechanical loading. A phenomenological model focused on modeling the shape of such interface cracks close to corners in layered interconnect structures for calculating the critical stress for steady-state propagation has been developed. The crack propagation is investigated by estimating the fracture mechanics parameters that include the strain energy release rate, crack front profiles and the three-dimensional mode-mixity along the crack front. The developed numerical approach for the calculation of fracture mechanical properties has been validated with three-dimensional models for varying crack front shapes. A custom quantitative approach was formulated based on the finite element method with iterative adjustment of the crack front to estimate the critical delamination stress as a function of the fracture criterion and corner angles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.