Abstract
In this study we analyse coseismic GPS displacements and DInSAR data to constrain a dislocation model for the three largest earthquakes of the 1997 Umbria-Marche seismic sequence. The first two events, which occurred on September 26 at 00:33 GMT (Mw 5.7) and 09:40 GMT (Mw 6.0) respectively, are investigated using both GPS displacements and DInSAR interferograms. We discuss and compare the results of previous studies which separately modeled a smaller subset of geodetic data. We provide a dislocation model for these two earthquakes which fits well both GPS and DInSAR data and agrees with the results of seismological and geological investigations. The first event consists of a unilateral rupture towards the southeast with a uniform dislocation. The strike, rake and dip angles are those resulting from the CMT solution. The second event consists of an unilateral rupture towards the northwest and a variable slip distribution on the fault plane. The strike and the rake are consistent with the CMT solution, but the dip angle has been slightly modified to improve the simultaneous fit of GPS and DInSAR data. While the second rupture (09:40 GMT) arrived very close to the surface, the fit to geodetic data shows that the first rupture (00:33 GMT) is deeper (2 km), despite the more evident surface geological effects. The analysis of new SAR interferograms allows the identification of a 5‐6 cm additional displacement caused by the October 3 (Mw 5.2) and 6 (Mw 5.4) seismic events. We use data from a new DInSAR interferogram to model the displacement field of the Sellano earthquake of October 14, 1997. For this event significant GPS measurements were not available. We tested two different fault plane geometries: a blind, planar fault (top depth = 2.4 km), and a curved (listric) fault reaching the surface. The two models provide a generally similar fit to the data, and show that most of the slip was released at depths greater than 2.4 km along a gently dipping (40‐45) fault surface. They also show that a unilateral rupture does not allow fitting the interferometric fringes since there is evident surface deformation to the northwest of the hypocenter. Moreover, we suggest that the concentration of high residuals in the southern part of our uniform slip model may in fact indicate a certain slip variability in this area. We conclude that, despite the moderate magnitudes and the lack of significant surface faulting, the space geodetic data allowed to constrain dislocation models giving new insights in the rupture process of the three largest events of the sequence.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.