Abstract
The pathogenesis of bipolar disorder (BPD) is unknown. Using human-induced pluripotent stem cells (hiPSCs) to unravel pathological mechanisms in polygenic diseases is challenging, with few successful studies to date. However, hiPSCs from BPD patients responsive to lithium have offered unique opportunities to discern lithium's mechanism of action and hence gain insight into BPD pathology. By profiling the proteomics of BPD-hiPSC-derived neurons, we found that lithium alters the phosphorylation state of collapsin response mediator protein-2 (CRMP2). The "set point" for the ratio of pCRMP2:CRMP2 is elevated uniquely in hiPSC-derived neurons from lithium responsive (Li-R) BPD patients, but not other psychiatric and neurological disorders. Utilizing neurons differentiated from human patient stem cells as an in vitro platform, we were abletoelucidate the mechanism driving the pathogenesis and pathophysiology of lithium-responsive BPD, heretofore unknown.Importantly, the findings in culture werevalidated in human postmortemmaterial as well as in animal models of BPD behavior. These data suggest that the "lithium response pathway" in BPD governs CRMP2's phosphorylation, which regulates cytoskeletal organization, particularly in dendritic spines, leading to modulated neural networks that may underlie Li-R BPD pathogenesis. This chapter reviews the methodology of leveraging a functional agent, lithium, to identify unknown pathophysiological pathways with hiPSCs and how to translate this disease modeling approach to other neurological disorders.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.