Abstract

Complementary Resistive Switches (CRS) alleviate size limitations for passive crossbar array memory devices by the elimination of sneak paths. Since CRS cells consist of two anti-serially connected bipolar resistive elements, e.g. electro-chemical metallization (ECM) elements, it is straightforward to use their corresponding memristive models for circuit simulation. Here we show that simple linear memristive models, which are often used in literature, are inapplicable. Therefore, we apply a physics based nonlinear model for ECM elements which is capable of simulating correct CRS behavior for anti-serially combined elements. Interconnecting memristive element models in CRS configuration is an advantageous way to check for memristive model consistency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.