Abstract

In this paper, we study how to minimize the latency of a message through a network that consists of a number of store-and-forward stages. This research is especially relevant for today's low overhead communication systems that employ dedicated processing elements for protocol processing. We develop an abstract pipeline model that reveals a crucial performance tradeoff involving the effects of the overhead of the bottleneck stage and the bandwidth of the remaining stages. We exploit this tradeoff to develop a suite of fragmentation algorithms designed to minimize message latency. We also provide an experimental methodology that enables the construction of customized pipeline algorithms that can adapt to the specific system characteristics and application workloads. By applying this methodology to the Myrinet-GAM system, we have improved its latency by up to 51%. Our theoretical framework is also applicable to pipelined systems beyond the context of high speed networks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.