Abstract

Primary rolling operations of twin-roll cast commercial aluminum alloys can be designed more efficiently on the basis of maintaining a constant rolling load throughout the rolling program. The computation of the final thickness of the strip for every pass can be conducted by means of the simplified theory of Bland and Ford, assuming a constant rolling load during the rolling schedule. Particularly, for twin-roll cast Al-1 percent Mn alloy (TRC 3003) it is possible to reduce one rolling pass if the rolling load is kept constant at about 800 ton. The implementation of this design procedure requires a knowledge of both the work-hardening characteristics of the material and the change in friction conditions throughout the operation. For this last purpose, von Ka´rma´n linear differential equation can be integrated following a more efficient computational procedure based on integrating factors and standard numerical integration methods. Also, the work-hardening characteristics of the material were determined from plane strain compression tests, on the basis of the evolution laws proposed by Sah et al. and Follansbee and Kocks. The rolling pass design that has been proposed could have clear advantages in terms of the productivity of the mill, quality of the rolled products and extension of the rolls life.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.