Abstract

This paper reports the results of the chemical composition modeling for an atmospheric pressure DC air discharge with water cathode. The modeling was based on the combined solution of Boltzmann equation for electrons, equations of vibrational kinetics for ground states of N2, O2, H2O and NO molecules, equations of chemical kinetics and plasma conductivity equation. Calculations were carried out using experimental values of E/N and gas temperatures for the discharge currents range of 20–50 mA. The effect of H2O concentration on the plasma composition was studied. The main particles of plasma were shown to be O2(a1Δ, b1Σ), O(3P), NO, NO2, HNO3, H2O2 and OH. Effective vibrational temperatures of molecules were higher than gas temperature and they did not depend on the discharge current. Distribution functions on vibrational levels for N2, O2, H2O and NO ground states were non-equilibrium ones.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.