Abstract

Like many other biological processes, calcium dynamics in neurons containing an endoplasmic reticulum is governed by diffusion-reaction equations on interface-separated domains. Interface conditions are typically described by systems of ordinary differential equations that provide fluxes across the interfaces. Using the calcium model as an example of this class of ODE-flux boundary interface problems, we prove the existence, uniqueness and boundedness of the solution by applying comparison theorem, fundamental solution of the parabolic operator and a strategy used in Picard’s existence theorem. Then we propose and analyze an efficient implicit–explicit finite element scheme which is implicit for the parabolic operator and explicit for the nonlinear terms. We show that the stability does not depend on the spatial mesh size. Also the optimal convergence rate in H1 norm is obtained. Numerical experiments illustrate the theoretical results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.