Abstract

Three approaches to determining mean soil water residence times in a steep headwater catchment were investigated. The deuterium concentrations of soil water collected from 11 suction cup samplers at the Maimai M8 catchment were determined weekly for 14 weeks and the results compared with those of rainfall in the same period. Deuterium variations in the suction samples were considerably delayed and diminished compared with the rainfall, indicating significant storage times and mixing with soil water. Soil matrix water at shallow levels (∼200 mm depth) in unsaturated soils was relatively responsive to fresh input, but deeper water and water near the stream subject to occasional water table rises showed much less variation. Steady state and non‐steady state exponential models gave similar mean residence times, ranging from 12 to more than 100 days for different locations. Three groups of soil water response were defined, comprising shallow, medium and deep (near‐stream) soil locations based on the mean residence times. The nonsteady models revealed considerable week‐to‐week and longer variations in mean residence time for shallow soil (SL4), but indicated that steady state models could adequately represent the system in the overall period investigated. In the third approach, model types and parameters that gave the best fits to the soil water deuterium concentrations were determined. Exponential and especially dispersion models were the most satisfactory. Weighting the input (rainfall δD) partially or fully with the amount of rainfall gave much worse fits than with the unweighted input, showing that much of the rainfall bypasses the soil matrix. The best fitting dispersion model (designated DM2) yielded the most accurate mean residence times: 13 days for shallow soil (SL4), 42 days for soil at 400 mm depth (SL5), both at midslope locations, and 63 days for soil at 800 mm depth near the stream (SL2). Capillary flow was important for the unsaturated shallow soil (SL4), while advection and hydrodynamic dispersion (mixing) were more dominant for the periodically saturated (SL5) and the generally saturated (SL2) soils.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.