Abstract
Abstract This paper describes the development of a control system for an industrial heating application. In this process a moving substrate is passing through a heating zone with variable speed. Heat is applied by hot air to the substrate with the air flow rate being the manipulated variable. The aim is to control the substrate’s temperature at a specific location after passing the heating zone. First, a model is derived for a point attached to the moving substrate. This is modified to reflect the temperature of the moving substrate at the specified location. In order to regulate the temperature a nonlinear model predictive control approach is applied using an implicit Euler scheme to integrate the model and an augmented gradient based optimization approach. The performance of the controller has been validated both by simulations and experiments on the physical plant. The respective results are presented in this paper.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.