Abstract
Electrical power generated from wind turbines inherently fluctuates due to changing wind speeds. Without proper control, disturbances such as changing wind speeds can degrade the power quality factor and robustness of the electrical grid. To ensure good power quality factor, high performance and robustness of the grid against internal and external disturbances, the use of Active Disturbance Rejection Control with an extended state observer ESO for a PMSG Wind Energy Conversion System is investigated. The system has been simulated in MATLAB/Simulink at various wind speeds. The obtained simulation results indicate that the controller maintains constant DC voltage at the interface of the generator-side converter and grid-side converters and achieves maximum power. The results also show that the system performance has good stability, precision and rejection of internal disturbances, with an overall system efficiency of 98.65%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Advanced Research in Fluid Mechanics and Thermal Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.