Abstract

We analyze the feasibility of energy conversion devices that exploit microscale radiative transfer of thermal energy in thermophotovoltaic devices. By bringing a hot source of thermal energy very close to a receiver fashioned as a pn-junction, the near-field effect of radiation tunneling can enhance the net power flux. We use the fluctuational electrodynamic approach to microscale radiative transfer to account for the spacing effect, which provides the net transfer of photons to the receiver as a function of the separation between the emitter and receiver. We calculate the power output from the microscale device using standard thermophotovoltaic device relations. The results for the performance of a device based on indium gallium arsenide indicate that a ten-fold increase in power throughput may be realized with little loss in efficiency. Furthermore, we develop a model of the microscale device itself that indicates the influence of semiconductor band-gap energy, carrier lifetime, and doping.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.