Abstract
In steam pipeline pressure energy recovery application, twin-screw expander is a promising approach to recover waste pressure energy dissipated in the throttling process. Since the expander operates at off-design condition in most circumstances, regulating expander capacity under fluctuating operating conditions appears to be an urgent problem. In this paper, a thermodynamic mathematical model is developed to study the performance of twin-screw steam expander under fluctuating operating conditions. In the modeling, suction pressure loss is taken into account, as well as leakage and heat transfer during the two-phase expansion process. Simulation results show that the filling factor varies 0.82–0.88 and isentropic efficiency varies 0.73–0.83, which proves twin-screw expander an efficient technology in steam pipeline pressure recovery application. Compared to suction pressure and back pressure, rotational speed affects the suction pressure loss more significantly. Increasing rotational speed has a negative effect on filling factor and larger expansion ratio leads to higher isentropic efficiency. In addition, over-expansion results in more energy loss than under-expansion. Therefore, the built-in volume ratio should be elaborately designed to ensure the expander operating at an under-expansion condition. Furthermore, rotational speed adjustment is recommended as the currently most convenient and efficient way for expander capacity regulation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.